Entire functions of several variables with algebraic derivatives at certain algebraic points
نویسندگان
چکیده
منابع مشابه
Algebraic Values of Transcendental Functions at Algebraic Points
In this paper, the authors will prove that any subset of Q can be the exceptional set of some transcendental entire function. Furthermore, we could generate this theorem to a much more general version and present a unified proof.
متن کاملPermutable Entire Functions Satisfying Algebraic Differential Equations
We show that if f and g are transcendental entire functions such that f(g) = g(f), then f satisfies an algebraic differential equation if and only if g does.
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملThe Uniformization of Certain Algebraic Hypergeometric Functions
The hypergeometric functions nFn−1 are higher transcendental functions, but for certain parameter values they become algebraic. This occurs, e.g., if the defining hypergeometric differential equation has irreducible but imprimitive monodromy. It is shown that many algebraic nFn−1’s of this type can be represented as combinations of certain explicitly algebraic functions of a single variable, i....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1969
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1969.31.693